The relationship between the number of COVID-19 cases, meteorological variables, and particulate matter concentration in a medium-sized Brazilian city

Authors

DOI:

https://doi.org/10.5327/Z217694781300

Keywords:

SARS-CoV-2; social distancing compliance rate; air pollution; aerosol.

Abstract

The COVID-19 disease was first identified at the end of 2019 and spread rapidly around the world in 2020. Its symptom includes an acute respiratory crisis and the disease has claimed millions of victims. According to the literature, the relationship between COVID-19 transmission, and climatic factors and air pollutants is still unclear. Therefore, studies aiming to clarify this correlation are essential. This study aims to determine the correlation between the number of COVID-19 cases, particulate matter (PM) concentration, and meteorological variables in the city of Limeira, Brazil. The statistical analyses used were a generalized model with gamma distribution, Spearman’s correlation, and cluster analysis, followed by the Mann-Whitney test. The variables included were rainfall, temperature, wind speed, relative humidity, and atmospheric pressure, in addition to social distancing compliance rate, dummy variables for business opening flexibility, and the weekday. The concentration of the coarse inhalable particulate matter (PM10) fraction showed an inverse correlation with relative humidity, rainfall, and pressure. The Total Suspended Particulate matter (TSP) had an inverse correlation with relative humidity, rainfall, weekends, and social distancing compliance rate. A correlation was also found between the number of COVID-19 cases and pressure, PM10, and TSP. Finally, the calculated relative risk showed that the reduction in PM10 concentrations directly affects health, which implies an estimate of almost 13 deaths avoided in Limeira, during the pandemic. The results obtained provide important information as to improving air quality and strategies to contain  COVID-19 transmission. Besides, albeit on a small scale, they confirm the relationship between the social distancing compliance rate, PM concentration, and COVID-19 cases.

Downloads

Download data is not yet available.

References

Ahmadi, M.; Sharifi, A.; Dorosti, S.; Jafarzadeh Ghoushchi, S.; Ghanbari, N., 2020. Investigation of effective climatology parameters on COVID-19 outbreak in Iran. Sci. Total Environment, v. 729, 138705. https://doi.org/10.1016/j.scitotenv.2020.138705.

Andrade, M. de F.; Kumar, P.; de Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-Martinez, P.; de Miranda, R.M.; Albuquerque, T.; Gonçalves, F.L.T.; Oyama, B.; Zhang, Y., 2017. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives. Atmospheric Environment, v. 159, 66-82. https://doi.org/10.1016/j.atmosenv.2017.03.051.

Austin, E.; Coull, B.; Thomas, D.; Koutrakis, P., 2012. A framework for identifying distinct multipollutant profiles in air pollution data. Environment International, v. 45, 112-121. https://doi.org/10.1016/j.envint.2012.04.003.

Bashir, M.F.; Ma, B.; Bilal; Komal, B.; Bashir, M.A.; Tan, D.; Bashir, M., 2020. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Science of the Total Environment, v. 728, 138835. https://doi.org/10.1016/j.scitotenv.2020.138835.

Brasil. CONAMA - Conselho Nacional do Meio Ambiente, 2018. Resolução nº 491/2018. Dispõe sobre padrões de qualidade do ar (Accessed Apr 20, 2021) at.: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=740.

Brasil. Morbidade Hospitalar do SUS - por local de internação - São Paulo. (Accessed Apr 24, 2022) at:. http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sih/cnv/nisp.def.

Chauhan, A.; Singh, R.P., 2020. Decline in PM2.5 concentrations over major cities around the world associated with COVID-19. Environmental Research, v. 187, 109634. https://doi.org/10.1016/j.envres.2020.109634.

Chen, H.; Huo, J.; Fu, Q.; Duan, Y.; Xiao, H.; Chen, J., 2020. Impact of quarantine measures on chemical compositions of PM2.5 during the COVID-19 epidemic in Shanghai, China. Science of the Total Environment, v. 743, 140758. https://doi.org/10.1016/j.scitotenv.2020.140758.

Chu, B.; Zhang, S.; Liu, J.; Ma, Q.; He, H., 2021. Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic. Journal of Environmental Sciences, v. 99, 346-353. https://doi.org/10.1016/j.jes.2020.06.031.

Chuang, Y.H.; Mazumdar, S.; Park, T.; Tang, G.; Arena, V.C.; Nicolich, M.J., 2011. Generalized linear mixed models in time series studies of air pollution. Atmospheric Pollution Research, v. 2, (4), 428-435. https://doi.org/10.5094/APR.2011.049.

Coelho Junior, E.M.; Quintino, L.F.; Della Piazza, C.A., 2016. Como as políticas públicas reduziram a poluição atmosférica na cidade de São Paulo. In: Anais do Fórum Ambiental da Alta Paulista. Tupã, pp. 312-322.

Companhia Ambiental do Estado de São Paulo (CETESB), 2018. Emissão Veicular. CETESB (Accessed May 21, 2021) at.: https://cetesb.sp.gov.br/veicular/.

Companhia Ambiental do Estado de São Paulo (CETESB), 2020. QUALAR - Sistema de Informações de Qualidade do Ar. CETESB (Accessed Mar 20, 2021) at.: https://qualar.cetesb.sp.gov.br/qualar/home.do.

Conticini, E.; Frediani, B.; Caro, D., 2020. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environmental Pollution, v. 261, 114465. https://doi.org/10.1016/j.envpol.2020.114465.

Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G., 2020. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Science of the Total Environment, v. 729, 139085. https://doi.org/10.1016/j.scitotenv.2020.139085.

Debone, D.; Leirião, L.F.L.; Miraglia, S.G.E.K., 2020. Air quality and health impact assessment of a truckers’ strike in Sao Paulo state, Brazil: A case study. Urban Climate, v. 34, 100687. https://doi.org/10.1016/j.uclim.2020.100687.

Domingo, J.L.; Marquès, M.; Rovira, J., 2020. Influence of airborne transmission of SARS-CoV-2 on COVID-19 pandemic. A review. Environmental Research, v. 188, 109861. https://doi.org/10.1016/j.envres.2020.109861.

Dominick, D.; Juahir, H.; Latif, M.T.; Zain, S.M.; Aris, A.Z., 2012. Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmospheric Environment, v. 60, 172-181. https://doi.org/10.1016/j.atmosenv.2012.06.021.

Dos Santos, F.S.; Pinto, J.A.; Maciel, F.M.; Horta, F.S.; Albuquerque, T.T. de A.; Andrade, M. de F., 2019. Evaluation of meteorological conditions influence on fine particulate matter (Pm2.5) concentration in Belo Horizonte, MG, Brazil. Engenharia Sanitária e Ambiental, v. 24, (2), 371-381. https://doi.org/10.1590/s1413-41522019174045.

Dos Santos, T.C.; Reboita, M.S.; Carvalho, V.S.B., 2018. Investigation of the relationship between atmospheric variables and the concentration of MP 10 and O 3 in the state of São Paulo. Revista Brasileira de Meteorologia, v. 33, (4), 631-645. https://doi.org/10.1590/0102-7786334006.

Elias, C.; Sekri, A.; Leblanc, P.; Cucherat, M.; Vanhems, P., 2021. The incubation period of COVID-19: A meta-analysis. International Journal of Infectious Diseases, v. 104, 708-710. https://doi.org/10.1016/J.IJID.2021.01.069.

Environmental Protection Agency (EPA), 2020. National Ambient Air Quality Standards (NAAQS) for PM (Accessed May 20, 2021) at:. https://www.epa.gov/pm-pollution/national-ambient-air-quality-standards-naaqs-pm.

European Commission (EC), 2008. Directive 2008/50/EC of the Europian Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe (Accessed May 20, 2021) at:. https://eur-lex.europa.eu/eli/dir/2008/50/2015-09-18.

G1 Piracicaba e Região, 2020a. Limeira fica entre as quatro cidades do estado abaixo de 40% de taxa de isolamento social (Accessed May 20, 2021) at:. https://g1.globo.com/sp/piracicaba-regiao/noticia/2020/05/12/limeira-fica-entre-as-quatro-cidades-do-estado-abaixo-dos-40percent-de-taxa-de-isolamento-social.ghtml.

G1 Piracicaba e Região, 2020b. Limeira volta a registrar a menor taxa de isolamento social do estado, aponta monitoramento. G1 (Accessed May 20, 2021) at:. https://g1.globo.com/sp/piracicaba-regiao/noticia/2020/05/09/limeira-volta-a-registrar-a-menor-taxa-de-isolamento-social-do-estado-aponta-monitoramento.ghtml.

Godoy, A.R.L.; Silva, A.E.A. da; Bueno, M.C.; Pozza, S.A.; Coelho, G.P., 2020. Application of machine learning algorithms to PM2.5 concentration analysis in the state of São Paulo, Brazil. Revista Brasileira de Ciências Ambientais, v. 56, (1), 152-165. https://doi.org/10.5327/z21769478782.

Habeebullah, T.M.; Abd El-Rahim, I.H.A.; Morsy, E.A., 2021. Impact of outdoor and indoor meteorological conditions on the COVID-19 transmission in the western region of Saudi Arabia. Journal of Environmental Management, v. 288, 112392. https://doi.org/10.1016/J.JENVMAN.2021.112392.

Han, J.; Kamber, M., 2006. Data Mining: Concepts and Techniques. Morgan Kaufmann.

Holtmann, M.; Jones, M.; Shah, A.; Holtmann, G., 2020. Low ambient temperatures are associated with more rapid spread of COVID-19 in the early phase of the endemic. Environmental Research, v. 186, 109625. https://doi.org/10.1016/j.envres.2020.109625.

Hrdličková, Z.; Michálek, J.; Kolář, M.; Veselý, V., 2008. Identification of factors affecting air pollution by dust aerosol PM10 in Brno City, Czech Republic. Atmospheric Environment, v. 42, (37), 8661-8673. https://doi.org/10.1016/j.atmosenv.2008.08.017.

Huang, H.; Liang, X.; Huang, J.; Yuan, Z.; Ouyang, H.; Wei, Y.; Bai, X., 2020. Correlations between Meteorological Indicators, Air Quality and the COVID-19 Pandemic in 12 Cities across China. Journal of Environmental Health Science and Engineering, v. 18, 1491-1498. https://doi.org/10.1007/s40201-020-00564-y.

Huebnerova, Z.; Michalek, J., 2014. Analysis of daily average PM10 predictions by generalized linear models in Brno, Czech Republic. Atmospheric Pollution Research, v. 5, (3), 471-476. https://doi.org/10.5094/APR.2014.055.

Instituto Brasileiro de Geografia e Estatística (IBGE), 2020. Canal Cidades - Limeira. Instituto Brasileiro de Geografia e Estatística (Accessed May 20, 2021) at:. https://cidades.ibge.gov.br/brasil/sp/limeira/panorama.

Instituto Nacional de Pesquisas Espaciais (INPE), 2022. Programa queimadas (Accessed Apr 14, 2022) at:. https://queimadas.dgi.inpe.br/queimadas/portal-static/estatisticas_estados/.

Kayes, I.; Shahriar, S.A.; Hasan, K.; Akhter, M.; Kabir, M.M.; Salam, M.A., 2019. The relationships between meteorological parameters and air pollutants in an urban environment. Global Journal of Environmental Science and Management, v. 5, (3), 265-278. https://doi.org/10.22034/gjesm.2019.03.01.

Krecl, P.; Targino, A.C.; Oukawa, G.Y.; Cassino Junior, R.P., 2020. Drop in urban air pollution from COVID-19 pandemic: Policy implications for the megacity of São Paulo. Environmental Pollution, v. 265, (part B), 114883. https://doi.org/10.1016/j.envpol.2020.114883.

Kumar, P.; Hama, S.; Omidvarborna, H.; Sharma, A.; Sahani, J.; Abhijith, K.V.; Debele, S.E.; Zavala-Reyes, J.C.; Barwise, Y.; Tiwari, A., 2020. Temporary reduction in fine particulate matter due to ‘anthropogenic emissions switch-off’ during COVID-19 lockdown in Indian cities. Sustainable Cities and Society, v. 62, 102382. https://doi.org/10.1016/j.scs.2020.102382.

Latif, M.T.; Dominick, D.; Ahamad, F.; Khan, M.F.; Juneng, L.; Hamzah, F.M.; Nadzir, M.S.M., 2014. Long term assessment of air quality from a background station on the Malaysian Peninsula. Science of the Total Environment, v. 482-483, 336-348. https://doi.org/10.1016/j.scitotenv.2014.02.132.

Leirião, L.F.L.; Debone, D.; Pauliquevis, T.; Rosário, N.M.É. do; Miraglia, S.G.E.K., 2020. Environmental and public health effects of vehicle emissions in a large metropolis: Case study of a truck driver strike in Sao Paulo, Brazil. Atmospheric Pollution Research, v. 11, (6), 24-31. https://doi.org/10.1016/j.apr.2020.02.020.

Li, X.; Song, H.; Zhai, S.; Lu, S.; Kong, Y.; Xia, H.; Zhao, H., 2019. Particulate matter pollution in Chinese cities: Areal-temporal variations and their relationships with meteorological conditions (2015–2017). Environmental Pollution, v. 246, 11-18. https://doi.org/10.1016/j.envpol.2018.11.103.

Mahato, S.; Pal, S.; Ghosh, K.G., 2020. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Science of the Total Environment, v. 730, 139086. https://doi.org/10.1016/j.scitotenv.2020.139086.

Maleki, M.; Anvari, E.; Hopke, P.K.; Noorimotlagh, Z.; Mirzaee, S.A., 2021. An updated systematic review on the association between atmospheric particulate matter pollution and prevalence of SARS-CoV-2. Environmental Research, v. 195, 110898. https://doi.org/10.1016/J.ENVRES.2021.110898.

Martins, E.H.; Nogarotto, D.C.; Mortatti, J.; Pozza, S.A., 2019. Chemical composition of rainwater in an urban area of the southeast of Brazil. Atmospheric Pollution Research, v. 10, (2), 520-530. https://doi.org/10.1016/j.apr.2018.10.003.

McCullagh, P.; Nelder, J.A., 1989. Generalized linear models. 2. ed. Chapman & Hall / CRC.

Menebo, M.M., 2020. Temperature and precipitation associate with COVID-19 new daily cases: A correlation study between weather and COVID-19 pandemic in Oslo, Norway. Science of the Total Environment, v. 737, 139659. https://doi.org/10.1016/j.scitotenv.2020.139659.

Nakada, L.Y.K.; Urban, R.C., 2020. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Science of the Total Environment, v. 730, 139087. https://doi.org/10.1016/j.scitotenv.2020.139087.

Organização Pan-Americana da Saúde (OPAS), 2020. Folha informativa sobre COVID-19. OPAS (Accessed May 19, 2021) at:. https://www.paho.org/pt/covid19.

Ostro, B.; Prüss-Üstün, A.; Campbell-Lendrum, D.; Corvalán, C.; Woodward, A., 2004. Outdoor air pollution. Geneva. Environmental Burden of Disease Series, n. 5.

Pani, S.K.; Lin, N.H.; RavindraBabu, S., 2020. Association of COVID-19 pandemic with meteorological parameters over Singapore. Science of the Total Environment, v. 740, 140112. https://doi.org/10.1016/j.scitotenv.2020.140112.

Prefeitura de Limeira, 2020. Limeira: Município de Interesse Turístico (Accessed May 20, 2021) at:. https://www.limeira.sp.gov.br/sitenovo/service.php?servico=3&categoria=null&item=null&conteudo=299.

R Core Team, 2018. R: The R Project for Statistical Computing. A language and environment for statistical computing (Accessed Apr 20, 2021) at:. https://www.r-project.org/.

Ravindra, K.; Rattan, P.; Mor, S.; Aggarwal, A.N., 2019. Generalized additive models: Building evidence of air pollution, climate change and human health. Environment International, v. 132, 104987. https://doi.org/10.1016/j.envint.2019.104987.

Riondato, E.; Pilla, F.; Sarkar Basu, A.; Basu, B., 2020. Investigating the effect of trees on urban quality in Dublin by combining air monitoring with i-Tree Eco model. Sustainable Cities and Society, v. 61, 102356. https://doi.org/10.1016/j.scs.2020.102356.

Rosse, V.P.; Pereira, J.N.; Boari, A.; Costa, G.V.; Ribeiro, J.P.C.; Vieira-Filho, M., 2021. São Paulo’s atmospheric pollution reduction and its social isolation effect, Brazil. Air Quality, Atmosphere and Health, v. 14, 543-552. https://doi.org/10.1007/S11869-020-00959-8.

Rudke, A.P.; Martins, J.A.; de Almeida, D.S.; Martins, L.D.; Beal, A.; Hallak, R.; Freitas, E.D.; Andrade, M.F.; Foroutan, H.; Baek, B.H., Albuquerque, T.T.A., 2021. How mobility restrictions policy and atmospheric conditions impacted air quality in the State of São Paulo during the COVID-19 outbreak. Environmental Research, v. 198, 111255. https://doi.org/10.1016/J.ENVRES.2021.111255.

São Paulo, 2020a. Governo do Estado de São Paulo. Adesão ao isolamento social em SP. São Paulo: Governo do Estado de São Paulo (Accessed May 20, 2021) at:. https://www.saopaulo.sp.gov.br/coronavirus/isolamento.

São Paulo, 2020b. Governo do Estado de São Paulo. Plano São Paulo - Retomada Consciente. São Paulo: Governo do Estado de São Paulo (Accessed May 20, 2021) at:. https://www.saopaulo.sp.gov.br/planosp/.

Seinfeld, J.H.; Pandis, S.N., 2016. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 3rd Ed. Wiley.

Selvam, S.; Muthukumar, P.; Venkatramanan, S.; Roy, P.D.; Manikanda Bharath, K.; Jesuraja, K., 2020. SARS-CoV-2 pandemic lockdown: Effects on air quality in the industrialized Gujarat state of India. Science of the Total Environment, v. 737, 140391. https://doi.org/10.1016/j.scitotenv.2020.140391.

Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H., 2020. Effect of restricted emissions during COVID-19 on air quality in India. Science of the Total Environment, v. 728, 138878. https://doi.org/10.1016/j.scitotenv.2020.138878.

Siciliano, B.; Carvalho, G.; da Silva, C.M.; Arbilla, G., 2020. The Impact of COVID-19 Partial Lockdown on Primary Pollutant Concentrations in the Atmosphere of Rio de Janeiro and São Paulo Megacities (Brazil). Bulletin of Environmental Contamination and Toxicology, v. 105, 2-8. https://doi.org/10.1007/s00128-020-02907-9.

Singh, R.P.; Chauhan, A., 2020. Impact of lockdown on air quality in India during COVID-19 pandemic. Air Quality, Atmosphere & Health, v. 13, 921-928. https://doi.org/10.1007/s11869-020-00863-1.

Tang, S.; Mao, Y.; Jones, R.M.; Tan, Q.; Ji, J.S.; Li, N.; Shen, J.; Lv, Y.; Pan, L.; Ding, P.; Wang, X.; Wang, Y.; MacIntyre, C.R.; Shi, X., 2020. Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environment International, v. 144, 106039. https://doi.org/10.1016/j.envint.2020.106039.

Thaper, R., 2020. SARS-CoV-2 transmission through air. Current Medicine Research and Practice, v. 10, (4), 196-197. https://doi.org/10.1016/j.cmrp.2020.07.005.

Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X., 2020. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Science of the Total Environment, v. 726, 138540. https://doi.org/10.1016/j.scitotenv.2020.138540.

Tosepu, R.; Gunawan, J.; Effendy, D.S.; Ahmad, L.O.A.I.; Lestari, H.; Bahar, H.; Asfian, P.; 2020. Correlation between weather and COVID-19 pandemic in Jakarta, Indonesia. Science of the Total Environment, v. 725, 138436. https://doi.org/10.1016/j.scitotenv.2020.138436.

Tung, N.T.; Cheng, P.C.; Chi, K.H.; Hsiao, T.C.; Jones, T.; BéruBé, K.; Ho, K.F.; Chuang, H.C., 2021. Particulate matter and SARS-CoV-2: A possible model of COVID-19 transmission. Science of the Total Environment, v. 750, 141532. https://doi.org/10.1016/j.scitotenv.2020.141532.

Yousefian, F., Faridi, S., Azimi, F., Aghaei, M., Shamsipour, M., Yaghmaeian, K., Hassanvand, M. S., 2020. Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012-2017. Scientifc Reports, v. 10, (292). https://doi.org/10.1038/s41598-019-56578-6.

Wang, J.; Du, G., 2020. COVID-19 may transmit through aerosol. Irish Journal of Medical Science, v. 189, 1143-1144. https://doi.org/10.1007/s11845-020-02218-2.

World Health Organization (WHO), 2021a. Coronavirus (COVID-19) Dashboard. World Health Organization (Accessed May 19, 2021) at:. https://covid19.who.int/.

World Health Organization (WHO), 2021b. WHO global air quality gudelines. World Health Organization.

Xie, J.; Zhu, Y., 2020. Association between ambient temperature and COVID-19 infection in 122 cities from China. Science of the Total Environment, v. 724, 138201. https://doi.org/10.1016/j.scitotenv.2020.138201.

Xu, H.; Yan, C.; Fu, Q.; Xiao, K.; Yu, Y.; Han, D.; Wang, W.; Cheng, J., 2020. Possible environmental effects on the spread of COVID-19 in China. Science of the Total Environment, 731, 139211. https://doi.org/10.1016/j.scitotenv.2020.139211.

Yao, Y.; Pan, J.; Liu, Z.; Meng, X.; Wang, W.; Kan, H.; Wang, W, 2020. Temporal association between particulate matter pollution and case fatality rate of COVID-19 in Wuhan. Environmental Research, v. 189, 109941. https://doi.org/10.1016/J.ENVRES.2020.109941.

Yotova, G.I.; Tsitouridou, R.; Tsakovski, S.L.; Simeonov, V.D., 2016. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions. Journal of Environmental Science and Health, Part A, v. 51, (7), 544-552. https://doi.org/10.1080/10934529.2016.1141620.

Zambrano-Monserrate, M.A.; Ruano, M.A., 2020. Has air quality improved in Ecuador during the COVID-19 pandemic? A parametric analysis. Air Quality, Atmosphere and Health, v. 13, 929-938. https://doi.org/10.1007/s11869-020-00866-y.

Zhang, Z.; Xue, T.; Jin, X., 2020. Effects of meteorological conditions and air pollution on COVID-19 transmission: Evidence from 219 Chinese cities. Science of the Total Environment, v. 741, 140244. https://doi.org/10.1016/j.scitotenv.2020.140244.

Zhu, C.; Maharajan, K.; Liu, K.; Zhang, Y., 2021. Role of atmospheric particulate matter exposure in COVID-19 and other health risks in human: A review. Environmental Research, v. 198, 111281. https://doi.org/10.1016/J.ENVRES.2021.111281.

Zhu, Y.; Xie, J.; Huang, F.; Cao, L., 2020. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Science of the Total Environment, v. 727, 138704. https://doi.org/10.1016/j.scitotenv.2020.138704.

Zu, Y.; Huang, L.; Hu, J.; Zhao, Z.; Liu, H.; Zhang, H.; Ying, Q.; Chen, M., 2017. Investigation of relationships between meteorological conditions and high PM10 pollution in a megacity in the western Yangtze River Delta, China. Air Quality, Atmosphere & Health, v. 10, 713-724. https://doi.org/10.1007/s11869-017-0472-1.

Downloads

Published

2022-07-08

How to Cite

Gonçalves, P. B., Nogarotto, D. C., Canteras, F. B., & Pozza, S. A. (2022). The relationship between the number of COVID-19 cases, meteorological variables, and particulate matter concentration in a medium-sized Brazilian city. Revista Brasileira De Ciências Ambientais (RBCIAMB), 57(2), 167–178. https://doi.org/10.5327/Z217694781300