3D-printed polylactic acid biopolymer and textile fibers: comparing the degradation process

Authors

DOI:

https://doi.org/10.5327/Z2176-94781192

Keywords:

degradability; additive manufacturing; fabric.

Abstract

With the advancement of sustainable actions in the textile industry, biodegradable polymers are considered a potential solution to environmental problems generated by plastic waste. In particular, renewable polyesters, such as polylactic acid (PLA), are the most promising bioresorbable materials for application in consumer areas, such as the textile industry, which is one of the largest segments responsible for waste generation. Based on these considerations, the objective was to investigate the degradability of 3D-printed PLA biopolymer, compared to the degradability of natural and synthetic textile fibers (cotton and polyester). The comparison was carried out with samples of materials degraded in soil and exposed to the weather for 120 days. Significant results were obtained for mass loss, as follows: 13.4% PLA; 8.9% cotton/flat, and 3.84% polyester/flat. As for the loss of area, the results were 46.5% for PLA; 15.4% for cotton/knit; and 6.25% for polyester/knit. The composition of the analyzed materials is one of the factors that can determine the period of degradation, since natural fiber fabrics present faster decomposition due to the presence of microorganisms. Another point to highlight is the material construction, as the knitted fabric is more unstable compared to flat fabric, its bonds tend to break more easily resulting in a different degradation process for flat, knit, and non-woven materials.

Downloads

Download data is not yet available.

References

Armstrong, C. M.; Niinimäki, K.; Kujala, S.; Karell, E.; Lang, C. 2015. Sistemas sustentáveis de serviços de produtos para vestuário: explorando as percepções dos consumidores sobre alternativas de consumo na Finlândia. Journal of Cleaner Production, v. 97, 30-39. https://doi.org/10.1016/j.jclepro.2014.01.046.

Besko, M. A.; Bilyk, C.; Sieben, P. G., 2017. Aspectos técnicos e nocivos dos principais filamentos usados em impressão 3D. Gestão Tecnologia e Inovação, v. 1, (3), 9-18 (Accessed November 23, 2019) at:. http://www.opet.com.br/faculdade/revista-engenharias/pdf/n3/Artigo2-n3-Bilyk.pdf.

Dambrós, P.; Cappelari, K.; Poffo, C.; Wisbeck, E., 2014. Avaliação da biodegradação de polímeros por Pleurotus djamor. Brazilian Journal of Environmental Sciences (Online), (31), 21-29.

Fletcher, K.; Grose, L., 2011. Moda & sustentabilidade: design para mudança. Senac São Paulo, São Paulo.

Kim, S.; Seong, H.; Her, Y.; Chun, J., 2019. A study of the development and improvement of fashion products using a FDM type 3D printer. Fashion and Textiles, v. 6, (1), 9. https://doi.org/10.1186/s40691-018-0162-0.

Konell, A. H. R. H.; Boemo, A. P. S. I.; Aguiar, C. R. L. de; Aguiar, G. C. O. de; Reche, M. W., 2020. Avaliação de degradação de tecidos de vestuário em contato com solo controlado. Engenharia no Século XXI. Poisson, Belo Horizonte, v. 19.

Krosofsky, A., 2021. Which fabrics are biodegradable? You can compost these all-natural materials (Accessed May 10, 2022) at:. https://www.greenmatters.com/p/what-fabrics-are-biodegradable.

Kuhn, R.; Minuzzi, R. F. B., 2015. The 3D printing’s panorama in fashion design. Moda Documenta: Museu, Memoria e Design, v. 11, (1), 1-12.

Mazibuko, M.; Ndumo, J.; Low, M.; Ming, D.; Harding, K., 2019. Investigating the natural degradation of textiles under controllable and uncontrollable environmental conditions. Procedia Manufacturing, v. 35, 719-724. https://doi.org/10.1016/j.promfg.2019.06.014.

Milošević, M.; Krkbabic, A.; Radoicic, M.; Saponjic, Z.; Radetic, T.; Radetic, M., 2017. Biodegradation of cotton and cotton/polyester fabrics impregnated with Ag/TiO2 nanoparticles in soil. Carbohydrate Polymers, v. 158, 77-84. https://doi.org/10.1016/j.carbpol.2016.12.006.

Niinimäki, K., 2015. Ethical foundations in sustainable fashion. Textiles and Clothing Sustainability, v. 1, (1), 3. https://doi.org/10.1186/s40689-015-0002-1.

Organização das Nações Unidas (ONU), 2015. Transformando o nosso mundo: a agenda 2030 para o desenvolvimento sustentável. ONU (Accessed June 2, 2020) at:. https://nacoesunidas.org/pos2015/agenda2030.

Perry, A., 2018. 3D-printed apparel and 3D-printer: exploring advantages, concerns, and purchases. International Journal of Fashion Design, Technology and Education, v. 11, (1), 95-103. https://doi.org/10.1080/17543266.2017.1306118.

Rajesh, G.; Prasad, A.V.R.; Gupta, A.V.S.S.K.S., 2019. Soil degradation characteristics of short sisal/PLA composites. Materials Today: Proceedings, v. 18, (part 1), 1-7. https://doi.org/10.1016/j.matpr.2019.06.270.

Salcedo, E., 2014. Moda ética para um futuro sustentável. Gustavo Gili, São Paulo.

Udale, J., 2015. Tecidos e moda: explorando a integração entre o design têxtil e o design de moda [recurso eletrônico]. 2ª ed. Bookman, Porto Alegre.

Vanderploeg, A.; Lee, S.-E.; Mamp, M., 2017. The application of 3D printing technology in the fashion industry. International Journal of Fashion Design, Technology and Education, v. 10, (2), 170-179. https://doi.org/10.1080/17543266.2016.1223355.

Yap, Y. L.; Yeong, W.-Y., 2014. Additive manufacture of fashion and jewellery products: a mini review: This paper provides an insight into the future of 3D printing industries for fashion and jewellery products. Virtual and Physical Prototyping, v. 9, (3), 195-201. https://doi.org/10.1080/17452759.2014.938993.

Downloads

Published

2022-07-09

How to Cite

do Bem, N. A., Reitz Cardoso, F. A., de Souza Paccola, E. A., & Soto Herek Rezende, L. C. (2022). 3D-printed polylactic acid biopolymer and textile fibers: comparing the degradation process. Revista Brasileira De Ciências Ambientais (RBCIAMB), 57(2), 302–319. https://doi.org/10.5327/Z2176-94781192